Arginine Methylation of SREBP1a via PRMT5 Promotes De Novo Lipogenesis and Tumor Growth.

نویسندگان

  • Liu Liu
  • Xiaoping Zhao
  • Li Zhao
  • Jiajin Li
  • Hao Yang
  • Zongping Zhu
  • Jianjun Liu
  • Gang Huang
چکیده

Dysregulation of the sterol regulatory element-binding transcription factors sterol regulatory element-binding protein (SREBP) and SREBF activates de novo lipogenesis to high levels in cancer cells, a critical event in driving malignant growth. In this study, we identified an important posttranslational mechanism by which SREBP1a is regulated during metabolic reprogramming in cancer cells. Mass spectrometry revealed protein arginine methyltransferase 5 (PRMT5) as a binding partner of SREBP1a that symmetrically dimethylated it on R321, thereby promoting transcriptional activity. Furthermore, PRMT5-induced methylation prevented phosphorylation of SREBP1a on S430 by GSK3β, leading to its disassociation from Fbw7 (FBXW7) and its evasion from degradation through the ubiquitin-proteasome pathway. Consequently, methylation-stabilized SREBP1a increased de novo lipogenesis and accelerated the growth of cancer cells in vivo and in vitro. Clinically, R321 symmetric dimethylation status was associated with malignant progression of human hepatocellular carcinoma, where it served as an independent risk factor of poor prognosis. By showing how PRMT5-induced methylation of SREBP1a triggers hyperactivation of lipid biosynthesis, a key event in tumorigenesis, our findings suggest a new generalized strategy to selectively attack tumor metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase.

Cyclin D1 elicits transcriptional effects through inactivation of the retinoblastoma protein and direct association with transcriptional regulators. The current work reveals a molecular relationship between cyclin D1/CDK4 kinase and protein arginine methyltransferase 5 (PRMT5), an enzyme associated with histone methylation and transcriptional repression. Primary tumors of a mouse lymphoma model...

متن کامل

Targeting protein arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing arginine methylation of eIF4E and FGFR3

Protein arginine methyltransferases (PRMTs) plays critical roles in cancer. PRMT5 has been implicated in several types of tumors. However, the role of PRMT5 in cancer development remains to be fully elucidated. Here, we provide evidence that PRMT5 is overexpressed in colorectal cancer (CRC) cells and patient-derived primary tumors, correlated with increased cell growth and decreased overall pat...

متن کامل

PRMT5 competitively binds to CDK4 to promote G1-S transition upon glucose induction in hepatocellular carcinoma

Although cancer cells are known to be "addicted" to glucose, the effect of glucose in proliferation of these cells remains elusive. Here, we report that upon glucose induction, protein arginine methyltransferase 5 (PRMT5) exerts a profound effect on the G1-S cell cycle progression via directly interacting with cyclin dependent kinase 4 (CDK4) in hepatocellular carcinoma (HCC). Upregulation of b...

متن کامل

Tumor and Stem Cell Biology Protein Arginine Methyltransferase 5 Accelerates Tumor Growth by Arginine Methylation of the Tumor Suppressor Programmed Cell Death 4

Programmed cell death 4 (PDCD4) has been described as a tumor suppressor, with high expression correlating with better outcomes in a number of cancer types. Yet a substantial number of cancer patients with high PDCD4 in tumors have poor survival, suggesting that oncogenic pathways may inhibit or change PDCD4 function. Here, we explore the significance of PDCD4 in breast cancer and identify prot...

متن کامل

Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4.

Programmed cell death 4 (PDCD4) has been described as a tumor suppressor, with high expression correlating with better outcomes in a number of cancer types. Yet a substantial number of cancer patients with high PDCD4 in tumors have poor survival, suggesting that oncogenic pathways may inhibit or change PDCD4 function. Here, we explore the significance of PDCD4 in breast cancer and identify prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 76 5  شماره 

صفحات  -

تاریخ انتشار 2016